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1. Introduction ~

~~~~~~~~~ ~~ IAs has been recently demonstrated 11] a system of integrodiffereiTaT~-

equations governs the evolution of the components of the electric displacement

field in a simple class of rigid holohedral isotropic dielectrics of the type

introduced by Toupin and Rivlin in [2]. More specifically , we consider the

following situation: Let ~ c be a bounded region filled with a noncond-

ucting material dielectric substance and assume that ~~~, the boundary of ~~

is smooth enough to admit of applications of the divergence theorem. Denote

by E,B,P and D, respectively , the electric field vector, the magnetic flux

density, the polarization vector , and the electric displacement vector in ~;

the fields E and D are related by D E B + P. € > 0 a physical constant.

By def ining, in the usual manner, the magnetic intensity H = B, where

> 0 satisfies c 
~~ 

c~
2 
(c E speed of light in a vacuum) the differential

forms of Maxwell’s equations in a Lorentz reference fraae (x’,t) become

+ curl E - 0, div B 0

(1.1)

(

curlU_ ~~~~
_ 0

~~div D O

provided that the densities of free current and free charge vanish in ~~, the

magnetization is zero in ~2, and the medium is nondeformable 
(rigid dielectric).

- 

. 

To obtain a determinate set of equations for the fields which appear in

Maxwell’s equations a set of constitutive relations among these fields must

be specified and in the theory of rigid nonconducting material dielectrics

there exists a hierachy of such constitutive assumptions of increasing complex-

ity. The simplest constitutive assumption possible corresponds to the situation
AIR FORCE RESEARCH (AFSC)
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where the dielectric is a vacuum so that j — C and J~ — c E , H = B. In
0

[3] and [4] this author has treated the evolution equations associated with

the Maxwell—Hopkinsofl Dielectric in which the constitutive relation between

D and E assumes the form

D(x,t) — E(x,t) + f ~~ Ø(t- t)E(x,T)dT , € > 0

(x ,t) c x (_cQ,T),  T>O ,

with ~J a monotonically decreasing function . The Maxwell—Hopkinson theory re-

tains the simple relation H B between the magnetic intensity and magnetic

flux density and thus does not take into account the possible influences of

magnetic memory effects. Constitutive relations generalizing those of

Maxwell—Hopkinson in several directions, and allowing for an understanding of

phenomena such as the Faraday effect in dielectrics, were put forth in 1960 by

Toupin and Rivlin (op.cit.). One such set of constitutive equations, for a

dielectric with holohedral symmetry (i.e., a dielectric which admits the full

orthogonal group as its group of material symmetry transformations) has the

form

1D(x ,t) — Z a ~~~~~~~~ + f ~ ø(t— r)E(x,t)d r
j—o

(1.2.) I n

~ 
H(x,t) — : b~!

(i) (x .t) +
I. :1—0

where the superscripts denote differentiat ion with respect to the time para—

meter and the coefficients ~~~~ are constants; whereas equations (3.2) still

effect an priori separation of electric and magnetic effe~ts they nn~.’ allo*.’

for consideration of dielectric materials exhibiting magnetic memory and may

-, .

~
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be viewed as a linearized version of a more general theory introduced by

Volterra in 1912 [5] to treat the case where the dielectric substance is

anisotropic , nonlinear, and magnetized , viz:

I t

~ 
D(x ,t) € E(x ,t) + V(E(x , t ) )

(1.3) t

~ 
B(x , t) u H(x ,t) + B(H(x , T))

where € ,~~i are constant second—order tensors; the constitutive relations (1.2)

follow from the set delineated in (1.3) when, among other assumptions, it is

assumed that the functionals V,B are linear and isotropic.

In [1] we have studied various consequences of the constitutive hypothesis

(1.2) under the simplifying assumptions that a~ b . 0, j � 1 and that the

past histories of the electric and magnetic fields are of the form

ic! , —
~~~~~ < t~~

_ t h
_t
h
< t <  0

(1.4)

12~ ~~~< t~~
— th

< t <  0

for some t
h

> 0. In particular for memory functions ø,~
. which are su ff iciently

smooth on (_t h,~
)we have the following

Lemma [1]: The evolution of the electric displacement field D(x,t) in any

holohedral isotropic dielectric (which conforms to the constitutive hypothesis

(1.2) with a
j 

b . 0, j �1 and past histories of the form (1.4 ) ,  for some

th~ 
0, is governed by a system of damped integrodifferential equations of the

form 

— ------ .~~-——- - —~~- —-. - . _____
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3D
2 + ~

(0)~.~1 + j(0)[D —c V2D JI a  I

b

(1.5) + 
~th o

‘O , in ~~, I — 1,2,3, c0 
— b/ a~~ (0)

provided D~ (x ,_t
h ) In O in ~ and ‘l~(0)w0. In (1.5) ~~ t )  is given in terms of the

memory function 4~( t )  via the recursion relations

— Z (—i)~ ~
n
(~) t�O

n 1

c~
1( t)  = a ’ q~( t) ,  4~

n (~~) =

for n � 2 , with a similar definition for ~ (t) in terms of t~(O). We assume that

a > 0, b > 0; It can be shown that ~ (0) — —b~~i~(0) and thus we assume ~j,(0)”~ 03D
so that the coefficient of —

~~~~~ In (1.5), i.e., +(0) > 0.

Remark The system of integrodifferentia] equations (1.5), for the components

of the electric displacement field, is obtained by combining the constitutive

relations (1.2) (with a
j 

— b~ 0, j �1 and past histories of the form (1.4)) with

the inverted constitutive equations, giving I and B in terms of D and H, respect-

ively, Maxwell ’s equations (1.1), and the vector identity

~V(x ) — grad (d iv V(x) )  — curl curl V (x)

which is val id Vx E ~ for any vector field V() which is sufficiently smooth on

~2; the constitutive relations (1.2) are 
inverted by the usual technique of

successive approximations. For the details of the computation we refer to

Ei ,~ 3].

L ~~~~~~~~~~~~~~ 
..~~~~ . 

:. : ~~~~~ ~~~~~~~~ ~.
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We now formulate , in a bounded domain ~~~~~~ an initial-history boundary

value problem for the components of the electric displacement field : Let

~. c ~ be a bounded ..~omain such that ~2 
c 
~; we assume that the region ~1/~2 is

occupied by a perfect conductor so that DE O  in W~ 
( 1 6  ,~ l0.5). On ~~~~~~

x ~~., where n(x) is the unit outward normal to ~~. at x and

0(x) is the free charge density at x 3~ . Now let ~ be any bounded domain

m R 3 satisfying ~~~~~~~ then for (x,t) 
~~ 

(_t
h~~
)
~ 

D~x,t) O. We have,

or course, equations (1.5) in ~ ~ (0,
cx) and D — 0 in ~2/~ (_ t

h
,c

~
). In con-

junction with these equations and the prescription of the past history for

(x E ~
) given by

<t
~~

t
h

(l.7a) D(x,t) •.
~~

‘

( ~~(x ,t) t~~ t’ 0,

we consider initial data of the form

(l.7b) D(x,0) — D (x) , x

1 .Z~~’°~ ~~
.
~~~
(&‘ 

~~

where D (x)—0 in ~~~ D (x) 0 in ~2/~ and we assume that I (D ) (D ) dx i 0.
~ 0~~~ — 1— — c~—~ i — c l —

The situation is depicted below

_ 
- -- •~~~~~~~~~~~~~ -~~~~ —~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ .~~~~ 
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D O on
[on ~~ ~~

1 D 0 i nI_~
j i

~ ~ . _ t h ,~~ j

D satisfies (1.5Y]

in~~

~~ is a perfect conduct~
3

2. The Initial—Vistory Value Problem in Hilbert Space

We introduce three spaces: H 
~~~~~ 

with the standard inner—product

f j -~ 
v
1
w~ dx

the Sobolev apace H — 81W) with inner—product+ ~~ 0

3v 3w
- ~~~~ ~! ~~~~~~~~ dx

-v j j

and H_ — H 1(..), the completion of C~ (c~) under the norm

3w 3w ½I ~: ‘H ’ 
— sup

1 t: If~ v1w1dx~/(~~, .~~~~! 
~~

—
~
- dx) j

— W (H j j

It is well-known that - (H1)
1
(dual space) that !~~

) 
~ 
!~2
(
~
)’ both topologicallv

(1) 

~~~~ 
— (L

2Ufl) 
, i.e., V E L

2
(:.) iff v~ L2(~), I — 1,2,3 with similar

interpretations for H
1(~), H 1(c~) introduced below.
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and algebraIcally , and that H
1
(c~) is dense in L2 (c2) ; we denote the embedding con-

stant for the Inclusion map I :H ~~~2)-’L2(c2) by y, so that L H

Vvc~~~(cZ). Operators N~ L ( H 1U2) ; H~~(~ )) and K L ((-
~~~ ,~ ) ; L

5~~R
1
(~~), H

1
(~ ) ) ,

where L (H1 (c2);H
1 (c2)) denotes the space of all bounded symmetric linear oper-

ators from H
1 (c2) into H~~(2.), may now be def ined as f ollows: f or any v € ~~ (c2),

t e ( — ~~, t~)

(Nv )
1 

— 
~

(0) [c
~~

2
vi

_v
i
], c E b / a ’Y(0)

(K( t)v ) ‘P(t)v1 
— (~

_2.)
~~(t)V

2
v
1

where the derivatives are understood in the distribution sense, i.e., V
2
v
1”

E L~,(~2) is such that for any ~ ~ d~~?)
3q 3v 1

I; . v dx = —J ~ — — dx.
~. i —  S~~~3x~ 3x~ 

—

The symmetry and boundedness of N and K(t), tc (_ cyv ), as maps of ~~U~
) into H~~~ 2)

will be verified in §3. If we now set r—W(O) > 0 then with the definitions of

N ,K(t) as given above the initial—boundary value problem (l.5)—(l.7) is equivalent

to the following initial—history value problem in Hu bert space: find u €c 2([0,cx
~);

such that 
~~ 

c C
1 ( [O ,co);H~ ( f2)) ,  

~~~ 
£ c([O,~ ’) ; H (c2) )~

2
~ and

+ ru~ — N u +  f
t K(t~.T)u(t)dT,’1O, t >  0

(2 . 1 )  u(O) u , u
~

(O) — V (u , €

0, —~~ < t  < — t
u(T) J h
— 

t i 4~
(t ) ,  th

St< 0

In general , without definiteness assumptions on the operators N and K(t), tc (_ ~~~,cio) ,

this abstract Initial—history value problem for u(t) is ill—posed . However , we will

show that with no definiteness assumptions on N and only mild assumptions on

i.e.,

(2) u:[o .”)-’ H
1 satisfying these smoothness assumptions will be called a strong

solution ? (2.1).

. , —

~

- - _ _ _ _ _ _ _ _
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A].] — ~v ,K(O)v > ~ 0, v ~

A2] K(t) I K(t) 1 L (H1;H 1
) 
satisfies K ( )  £ L1[O ,°~)

A3] K(t) EfH
~~~N L (H

l
~~).R

_l
(~))

dt satisfies K() L1
rO ,~ ) with

K ( 0)  = 0.

where denotes the strong operator derivative of K, it is possible to derive

asymptotic lower bounds for the 
~-2 

norms of solutions U to the system (2.1)

which lie in classes of bounded perturbations N of the form

(2.2) N { c c([ —t h , a~) ;i!~) I sup IIvH H
]. � N)

[_th,o) —

~~

f or some N > 0. Our results are obtained by using a mixture of logarithmic con-

vexity and concavity arguments which have been used sucessfully now for over a

period of more than a decade in order to treat problems of uniqueness, stability ,

and continuous dependence for solutions to ill—posed initial—boundary value

problems and initial—history boundary value problems associated with various

linear and non—linear partial differential equations and integrodifferential

equations [see [7]—[9],[lOMl2i~, and the references cited therm
]

Remarks We offer below some co ents regarding previous work related to one or

more aspects of the current investigation:

(1) Growth estimates for a class of damped linear integrodifferential equations

associated with holohedral isotropic dielectric response have been obtained in

[1] via a concavity argument; the nature of the estimates precludes our obtain—

ing from them any information concerning the behavior of solutions as ~~~~~

More specifically, we have shown the following: For any ~ >0, let be a strong

solution of (2.1) with U
a(O) = czu , where it is assumed that <u ~V >

L
> 0~0

~~~~ 

_Ø  L~~~~
(_ T)

~~~
(t )dT>

L < 0, and that K satisfies hypotheses ~~~‘
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-

~~~~~

A2, and 1 I I ~~ l l L ( H l (~ ) H
_1
(~)

dt a, Then , provided Ilu II~~
� T —v —~~~~

1 1 — v u
and T~~~ en i t  follows that

2<u ,v ~ — F H u  H 2
— v — c L .) —o 1..

u ,~~~~~ 
}.‘ ( — ~~)[‘ (r)d~ >L-~ ½

(2.3) sup I u
C
~(t) I I  

~ 
—v 

- 
kr- 

__________ 

~T for each

t~~ T 
—

I’. u ,Nu where
~~~~~~ L , —v ---O L.)

— ½ 1 N i  1 —l —

L(H (~ );H (
~ ) )+~ I K( T )~ L

8
(~~~(~~); H~~ (~~) ) dt I

+ T j I~~( ’) I 1 L ( n (c?) ; u~~(c?) ) di .

L
The estimate (2.3) does not require tha t u belong to ~i class of bounded pertub—

ations of the type specified by the set ~ defined in (2.2) but It is limited to
( 3 )

T ~~ . An estimate completely anologous to (2.3) is available for the undamped

situation , i.e., (2.1) with F — 0, but can not , in view of the hvpothesos ‘:hich

led to (2.3) for tht’ undamped situation , be obtained by simply setting F = 0 in

those hypotheses. The initial—history value problem (2.1), with F — 0 , is

shown in :31 to model the evolution of the electric displacement field 0 in a

nonconducting dielectric of Maxwell—llopkinson type and an estimate of the type

(2.3) is obtained there under the assumption that1”~ ~~ h j~2. .

2’~u ,v >
~~~0

Finally , we indicate that in contrast to the various concavity arguments employed

in :i] and [3’ , for the damped and undamped thtegrodifferential initial—history

value problems associated with (2.1), growth estimates for solutions to these

respective problems which lie in bounded classes of perturbations , of  the tvpt

‘
~
3
~The estimates in i~ and 3] are obtained by using a mod i f i ed  c o n c a v i ty
argument.

-. .- .-- ~~~ . ..-..,
~
-_ _  .- - .~~—. —--- - .~ - . ~~~~~~~~~~~~~~~ -~ -.~ ..~-—--
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—i

~. , can also be obtained by using logarithmic convexity arguments, i.e., ‘4i;

the nature of the logarithmic convexity argument , however , involves not only a

restriction to classes of bounded perturbations but also a restriction to finite

time Intervals of the form [0,T) , T’ ~~~~, and requires , in addition , the stonger

hypothesis that

2 1~~K v , 1 , Vv H (
~

)
— — 

~~L.) — H — —v—o
with

~�yT I ~~ L (H
l(~);H~~(~)

Logarithmic convexity arguments have also been employed in [8] and [91 , to

obtain uniquenes : and continuous dependence theorems,as well as growth estimates.

for solutions to Ill—posed initial—history b~undarv value problems in isothermal

viscoelasticit . and in [161 to obtain growth estimates for solutions to a class

of nonlinear integrodifferential equations in Hu bert space.

(ii) Several authors ([13], 14 , and the references cited therein) have studied

the asymptotic behavior of solutions to initial—value problems associated with

damped evolution equations of the form

(2.4) + + Bu - 0

where u:[0,°~-~ H , a real Hu bert space with inner—product < , ~
- and natural norm

the usual assumptions which are made are that B is in L(H;H) and satisfies -

a coerciveness condition of the form

(2.5) <v ,Bv> � X I !~ I I~ X >0 , v € V( B)

with ~ 
(B) H. When the linear operator A satisfies <Av ,v > � 0, and exists (the

_ _ _ _
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s tr ~ n g l v  damped e~is e)  i t  is wel1—kn~wn tha t t he  ener ~’v

( t ) -~ ( I  ~~ 
+ ~u(t ) ,  1~ u ( t )> )

decays at a uniform exponential rate; even if A ’ does not exist (the weakl y

damped ~asc) i t  can he shown t h a t  in c e r t a i n  c i r cu m st a n c e s  l im  L ( t ) = O .  In ~l5 1
t~~~c’

we considered the system

(2.6) u’~ + ~ — Nu~ — 0 , T > 0 , 0 t~— t t  t

‘ - ~ - t
u (0)~~zu , u (0) v (u ,v— O t C’ -

~~~~ —u —

wit h a > O a n d u
t

t ~~ o,~);V(N)). lf~~v ,Nv>~~- X I f v ~~L,X > O ,V v t  V(N).(the

H hypothesis corresponding to (2.5)) asymptotic stability in the energy nc1r~. fellows

i ediatcl y ;  however , i t  is shown 1151 that if N is symmetric , <v ,Nv> ~ 0.

Vv. ~
)
~N), and ther e exists an element ~~~~ (N) such that ~~~~~~~~~~~ any soluticn

A

of (2.h) having the requisite smoothenss must satisfy , for  u u • and ~ .
—Q —o

sufficienti large

( 2 . 7 )  Urn u~~(t)j ~~~~ ~ 
2~~:(~ ~)

— —V

where (.~~~
‘) depenus on~~~~,v and sa t isf ies u r n  ~~~~~~~ (i.e.. solutions

arc asvm p toicall v bounded away from zero , for  ~i sufficiently large , no matter

hc~w strong the damping is. The asymptotic lower bound (2.7) is obtained in

15 by emp1t~ying a mixture of logarithmic 
concavity and convexity arguments

to establish the estimate

(2.~ ) I U
a

(~~) 1  l
2:~~

2
: ~~ exp

for all t �O ,.-~ � 
I 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
and does not require that u~ be a priori res—

t r i L t e d  t i.’ lie in a class of bounded pe r tu rba t ions; the  es t imate  ( 2 . 8 )  ma’- he

-
. - - - — . —~~~~~ --~~~~~~~~-. -  - -
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easily extended to the case where 
~

tL (I-ç.H_), u~
:i0 ,cr).+H+ 

where H
+,

is a second

Hu bert space with inner product <

~~~

>

~~ 

and natural norm I (• )lI + such that

H+.E H , both algebraically and topologically ,  and H _ is the completion of H under

the norm I ( )  H defined via sup ‘ ‘  .

!J L~.
In par t icu lar , the system (2.1)  reduces to (2 .6 )  if k=O , u - ~~u , and we i d e n t i f y

H L 2
(~~) H+ H1(

~
) ,  H~~’H

1(~~) .  For the system (2.1) we shall derive asymptotic

lower bounds of the form (2.7) without introducing a one—parameter family of

initial—data functions of the form cm , and without making any definiteness

assumptions on N. For definiteness hypothesis on N ,K(t), which imply the exist—

• ence , uniqueness , and asymptotic stability of solutions to initial—history value

problems of the type (2.1) we r e fe r  the reader to [161 and [l”1 and the references

cited therein .

3. Asymptotic Lower Bounds for Solutions

We want to show that, under an appropriate set of circumstances, solutions

ucN of the system (2.1) are asymptotically bounded away from zero, in the

norm , even as the damping term ~~~~~ To this end we will establish the follow—

ing:

Theo rem Let uc~J be - strong solution of (2.1) where NcL (H1-H
1
) and

— S —0 ’ —

KCL
2 ( (_ a , c ) ; L (H ’,H ’))  such that hypot hes is Al ,A2 , and A3 (of §1) are sa t i s f ied .

If E(0) =~~Hv I ~— ( u  ,Nu > < 0 with
° -~2 ~) 0 1 ~2

(3.1) E(0)1 4 ~~;2~ 
~ L1ro ,~)

H 
~

then for  all t , 0~~t< °- , and any ~~>0 , F(t)= 11 u 1 1 4  satisfies the differential

inequality

‘‘ -+ 1(3.2) FF —(-~-~-~~)F :-— FFF ’

~~~~~ ~~~~~ 
- ~~~~~

- . ~~~~~P . 1 ,, ~ (~I 1 . -  ~~~~~~~~~__________________  - -r
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2
Proof. From the definition of F(t) we have F 2<U

~
U >

L 
and F —2 1 

~~~ I L 
+

—2 —2
Z Z U

~~
U
t t

>
L 

. Direct computation then yields
—2 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I~~ I ‘ L

where

(3.4) 
~~~~~~~~~~~~~~~~~~~~~~~~~ 

0

by the Schwarz inequality. Therefore, for 0� t < ~~, and any ~ >0

-, ,
(3.5) FF —(~+l)F � 2FG~

where, in view of the integrodifferential equation (2.1
i
) for u(t)

(3.6) G~(t)~~u,Nu >~ 
_F<U

~
Ut~L 

—(2~+l) I k?.~I ~
-<a , .rt C~1c ( r_ T ) u ( T ) d T >

L

As F (t)=2< u ,ut >L 
we may rewrite (3.6) as

(3.7) G~(:) ~ F -(2 ~+l) [I I~~! ~~~~~~~~~~ ~
—2~ < u ,Nu> — <U ,! ~~

(t_ T ).~~
( T)d T>

L—2

=— -~-F _2(28+l)E(t)_28< u,Nu>L

— -cu,! 
~,~
K(t_T)u(T)dT>

L— 
—2

in view of the definition of E(t). Taking the L2 inner—product of (2.11
) with

and integrating we easily obtain

(3.8) - . 
E(t)=E(o)_r!t H u H~~dT

—f ~<~~,f ~ K(T—A)u(X)dA ~~ dt

and substitution into 
~~~~~ 

then yields

~~~~~~~~~~~ —- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -

-
—- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~

• - - •
~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.
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(3.9) ~ (t)�—

—

where we have dropped a non—negative term proportional to f ~ 1 ju I I~ dT. If we
° 

~~~~~ —2now take the 
-~2 

inner—product of (2.l
i
) with u(t) and use the definition of F(t)

we obtain the identity

(3.10) ½F + 5r =i b~~I I~~
+<

~~~ >L

-

—2

which implies that

(3.11) 
~~~~

‘
~~

>
L 

= 
~~~~~~~~~~~~~~~~~—2 —2

-2B<

Substituting from (3.11) into (3.9), collecting terms, and dropping a non-

negative expression proportional to now yields the following estimate
—2

for G
8
(t):

(3.12) G~(t)�—r(~+½)y~~~F —2(2~+1)E(0)

_ (2
~+l)<U~f

t
c,~K(t_TX1(T)dT>L

+2(2~.i.l)!~<~~~,ft K(’r_X)u(X)dA>
L

d.r

Substitution for G 2(t) from (3.12) into the differential inequality (3.5) now

produces

______________ — •.. L ~~A . .  ~~~~~ ... .~~ è.- IaS -..
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I,  1$. I I I

(3.13) FF — (~+ 1)F ~—2r(~+½)FF —28FF

—4(2t1+1) E(O) F

_2(28+1)F<~l ,f
t 

~
(t_T)

~~
(T)dT>

L—2
+4(28+l)F!

t<u ,!
T K(T_A)u(A )dA>

L
di

which is equivalent to

‘‘ 
~+l ‘3~ 

I
(3.14) FF —(

2
-~~1

)F ~ —rFF

—4FE(0)—2F< u,f
t K(t_T)u(’t)dr>

L

+4 Ff t.~ u ,f ~ K(t-A )u(\)d\ - dT
• °~~~~~~~ 

‘ -

or , in iiew of our hypotheses that E(0)< 0

, I
8+1(3.15) FF — (

28~ 1
)F �—I’ FF

+ 2F1 2~ E(0) I~.<u ,!t~ ~
(t_

~
r)

~~
(T)dT >

L

+ 2J<~~~,!
t
~~ K(T_A)u(A)dT>L

dT

We now seek to bound the two expressions involving K(t) on the right—hand side

of (3.15). Let us first note, however, that as

( 3 .1 .6 )

.Izu(T) ,J T K ( T _ A) u (A) d A >
—2

— u(r) ,f T KT(T_X)u (X)dXr~L

— u(T),K(0)u(T)~

(3.15) has the equivalent form

- ~~~~~~~~~~~~~~~~~~~~~~~~~



I

(3.17) FF -(~~~f)F~~~-rFF

+ 2F[2I€(o) I _2.r~~
u(T),K(o)u(T);.L di

- 2!
t
< u ( l ) , J

T 

~~
(T_A)!(A)d

~~L
di

— 2 cu  ,f

+<u ,~~ K(t_T)u(
~
r )d

~
r>
L J

from which it follows that

~~I 8+1 ‘~~~
“

(3.18) FF — (28-~~)F �—rFF

+ 2F[21 E(0) I -2< u ,!°

- 2!t< u(T),! 
~~

(i_A)u(
~
)dA>

L
dT

—2

by virtue of hypothesis Al relative to K(O). We now have the following estimates

for the integrals appearing on the right—hand side of (3.18):

(i) I<
~~
,!°
~~
K(_T)u(T)dT>L I

~~O
HL !

0
~~, I I ~ ( _ T ) I f ~ (H h ;H~~) 

T ) H  1 d i
—2 s— o—  H

~Y I I~~I I Hl[ t
8
~~) I H I Hl!~~ I IA(-t) I 1 L (il

l u~
J~~t~J l 1)2!~

c I I~~i I  
L$(jj~ ,li

u
)
dT

�y N !o II .~
(T)II L (Hl,H

_1
)dT

therefore , 

—  -



-- 

- 

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(3.19) —2~u ,f° K(_i)u(T)dT>
L

( i i )  I c u ,f ’ K(t—i)u(i)th 
-~2 

I

I jut:t) 
-‘-2 

I~~tt—~ I 1 L (H 1
,H~~) 

I I~ i I

~(
suP ,Iu(t) IIl)2 f

t II K (t— T) II L (H l ,H
_]

) dT

I~ (t )  I~~~
2!
:

II V ~~~I L H

y N  f ~, I L ~~t I I L ( H l ,H _l ) d t

and , therefore , for 0~ t~~

(3.20)

- 

~ 
N~f;i I~(t)

Finally, we have

(i i i)  I J~<!(i) ,!T ,~, .~,r (T_ A) u (A )dA>
L dT J

f t 1 ( ) J .
T K (T_A)u(A)dX >

L di
° h~~ —2

~ !:(iI~
(T)H L !~ II~~(T _ A II L (H 1

,H
_l
)I ( H H

1d
~~~

dT

~ 
y 
~ ~~

t
h

i~~
) 

I~~)
2
..: 

~
t
h

I I~~~T-A I L (M l 11-1) dAd T

- ~ ( s u~~~ I k~( t ) i i ~ 1)2 .i•:: f
T+t

h l  I~~
(
~)I L ( } ~

1,H
_l

)dPdT

< -
~ N !~ (k(t)I

a —
— ~ N P. !

I
— y N I k (A )dA~~y N I I ~ I I L [0 ,c~’).th 1

~-.1 
- -

~~~
-

~~~~
— -- -~~~~~~~- - - - --~~~~~~~

•-
~~~~ -~~~- ——- -- -- - - -~~-
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where K ( X ) J H K A ( X ) I I L (Hl,11 1)dL Therefore, for 0~~t< ~~,

(3.21) 2ft< ~~~ ,j ~~T~~ T
( T X

~~~~~~~~~~~L
dT

—2y.N i k iI L [ o ~ ,)

Combining (3.18) with (3.19)—(3.21) then yields the estimate

~~1 8+1 ~1’ ‘(3.22) FF 
~28+1~~

’ �—rFF

+ 2F [2IE(0)I_3yN2{ lt K II L [o~~)+ II R II L [o~~~
)]

which, in view of our hypothesis relative to IE(O)i, implies the stated

inequality, i.e. (3.2).

Corollary 1. Under the same conditions which prevail in the Theorem above
/2< u ,v >

—0 —o L
(3.23) ur n  I L~ (t) I I~ > iu I ~ exp( 2

_2

t-~~~ —2 ~~~
° —2 ~ r I u  11 L—2

Proof: In (3.2), which is valid f or all $ > 0,ve take the limit 8 4- 0+

and obtain

, I  e7. I
(3.24) FF —F �—~FF , 0�t< ~~~.

Direct integration of this differential inequality then yields the lower

bound

(3.25) F(t)�F(0)exp[(~~~~~)(l_e~
’t
)], 0�t<

which, in turn, implies that

(3.26) 
~~~~~~~~~~~~ 

F(t)�F(0)exp~~j~~~)

This last result is equivalent, via the definition of F(t), to (3.23).

Q.E.D.
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A better lover bound and asymptotic estimate (as t -.+a) may be obtained

with a little further effort , namely, we have

Corollary 2. Under the same conditions which prevailed in the above Theorem ,

it follows that for all t > 0 , and any a, ½ ‘-~~~~ ‘- 1 ,

(3.27a) I L l  I
L 

I Iu II L{+~~~~~~~~~~ 2 )(1e]
0

so that, as t~~t+

2(l—a)< u ,v >

(3.27b) I k~(t) I I~ 
�
~ k I i~ 1 + 

2 .&2—2 —2 r i~~ I I

Proof. For any a ‘0

— a—l
(3. 2R) [V~~~~~ J ’’ (t)  — (l_a)F ( t ) [F ( t ) F ’’ ( t ) — a F ‘

~~t )

and from (3.2) with a — 
28+1

(3. 29) (l~~)F
1[FF ’ ‘

~~F 
‘
~~~ � (1 )F~~~~[ -rFF

’]

-a
— —r(1—c~)F F

8+Therefore for

(1—ct) ‘ ‘  —a(3.30) [F ] (t)�—r(l—ct)F F

Let G(t)—F~
1
~~~ (t) and H(t)-G

’(t); then (3.30) implies that H ’(t)�-rH(t) and

an integration produces

—Ft ‘ I —Ft
H(t)�H(0)e .- ‘ C (t)�C (O)e

A second integration then yields

~L. 
- • • • ••

~~~~ ~~~~~~~~~~~~~~~~~~~~



G(t)~ C( 0) + C
’(O) 

~l_e~~
t ]

which is equivalent to

(3.31) F~~
_a)
(~)~ F~~~

a) (O) + 
(1_a)F (O)F ’(O)(le

_rt
)

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

from which the stated estimate (3.27a) follows after taking the (1—ci)th root on

both sides of (3.31) and using the definition of F(t); we note that (3.27b)

follows directly from this last estimate and that cv”8+l/28+1 takes on all

values in the in the interval (½,1) for 8 > 0.
Q.E.D.

Remark Clearly as 8~0+ ,cz~*1; taking the limit in (3.27b) as a-’-l and using the

elementary fact that

-• xlim [l+A x - —

we recover (3.23) from (3.27b) .

Remark Clearly both (3.23) and (3.27b) imply that

lUn Urn H~ ( t ) I l ~ ~l I~~II~
~~~ t-’+~ ’ —2 —2

so that the L.,~ norm of u is bounded from below as t-+a~ even as the damping be—

comes arbitrarily large; this is the analogue, for the ill—posed integrodifferential

initial—history value problem (2.1), of the asymptotic lower bound obtained in

t15~
.

Remark We comment here on some of the conditions imposed by the hypothesis of

the Theorem on the electromagnetic memory functions ~ and ‘~ which appear in (1.5)

• - • ~~~~~—~~~~~~~--- —- • - - -- --— -
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and serve, therefore, to def ine the operators N and K(t) we have (4)

(3.32) <
~~‘~-~

0
~~

>
L2 

f ~ v~ [K(O)vJ 1 dx
— 

~~(0) !~ vi
v
i
dx_ (

~~
)
~~
(0)!

~ 
v
1V
2
v
1 

dx

F(0) I I!i 
~ 2 aO~~~~~~~~ 2~~~~ ’t~~~~

i

c~~ax. ~~~~~ . 
—

b 1 3

+ (~2~ )~ ( 0 ) I I ~ I I ~i
—2 a

for any v c H1(1Z). Therefore (hypothesis Al) _<
~~,!(0)rL

�0,V
~~
c
~~

(S2), 1ff

(3.33) ‘~‘(0) I I!i ~ +
(._.2.)~~(O) I Iy.I I~l � 0

—2 o —o

If ‘i’(O) � 0 then via the embedding of R~(~), into

� Y2
~( O ) I I I I 21 F’—2 1~o

and (3.33) wIll be satisfied, for all v E H 1(~2),provided

2~(~) + (—~~~
(0) � 0 4+

Thus, as far as hypothesis Al goes, we have

(3.34) {~Y(0) �0, ~~~) 
<- (_~~~2~~~)} ~~~~

—< v ,K(O)v>L~ 
0, E~~~(~~)

In view of (3.33), the same conclusion obtains if ‘l’(O) �0 , ~(0) �0. Also

l<v ,K(t)v
~L I

(3.35) 1 IK(t) H 1 ‘H2 H 1
~’ 

~~~~~~~ 

— — — 
2

— ‘
~s’—o ’— 

/ VEil1 I lv i I 1
— --•0 — H

- 
~~~~ 

If~v1fi~(t)v1 ]d~d

vcil I l v I l  1
— --0 — 

H

be consistent with the formulation of the initial—history boundary value problemin §1 we have, in fact, v — 0 in 
~~~~~~~~ in the computation below.



I I!I 
~~~~~~~ 

~~
— sup — —

~~~~~~~
— —

V t H 1 Hv Ii 2l— --V — 
H

( I c~~ I I ~~I~~\ b
sup ( _-_-_ _

~
__ __.:x. 1+ (—~ )~~( t )

~ / a

+ ( -2-) i~ (t ) 1

Clearly , hypothesis A2 will then be satisfied if J
a

~!~~~dt~ ~~~, and f j~~(t)I dt< 
~~~,0 o

i.e.

(3.36) {IckL 1[0,
O
~), I~ i (L1ro ,

u~)) .-ktL 1~~
0,a).

A computation entirely analogous to (3.35) yields

-, b
(3.37) 1 -~-t 1 L5(i!~

,H
~~
) ~ H ’~

’3
~(t)j + (~~)I~’(t)I

and , therefore , for hypothesis P3 we have

II~~
3
~ldtcL [0,~ ), fI~ Idt L {0 , c~)

(3.38) 1 1

!l 3
~I dt !~ ,0, _ o u I ~ I ( t ) l d t ! 0..o

with ~(0)— 0

1Finally , for any v~H 
(~) ,  we have

~~~~0

(3.39) 
-~2~~~ 

v1[N v ] . dx

— ~(0) I f
~
c
0
v
i

V v jdx_f~vjv~ dx
3v . ~v ~v. 

- V  1 1 1 • -c ’Y(0)[~~~ i-~
-__ n~dx—f~~—— ~~~

— dx

— 

~‘(0)i I v II ~

— — 

~‘(0)[c l i v !  I~ l + i i v i J ’~t 

-~~~~~~--~~~~~~~~~ - - - .  ~~~~~~~~~~~~~~ •

~~~~ 

_
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there fore,

(3.40) 2E(0) v 1I — - u  ,Nu ~—c L~ —v ~~~~~V

‘ I

“ i “ I i~ +~ : (0) c I l u I 1 l  u
0 I,, 0 —o H + —v - L -

-V -
~~

.
~ 

b 
.Hv +(—~) I I u  ~~1 + ~( 0 ) I I u  < 0

—o a —0 H —o L
- o —0 2

1ff

(3.41) “(0)<—
~l I!~l i~~ + . 2 I  ~~i i~1J/ l .~~I 1 L

If W (0) satisfies (3.41) then

(3.~~1) IE(0) i-~ I~(°) I I  k 1  i~~-( I I~~I ~+(~) I~~I ~ i)~

and (3.1) is equivalent to requiring that

(3.42) I~(°) l~ ‘~~~(3YN- I I ~ I L [ O ) + I k I L [ O ) )
—2 

H I l L (-~ ) I I ~~l I ~1)
where

(3 .4~~) I k H L [O ,00) � y
2
!:~~

(t) dt +(~~)!:1~~~
t Idt

~ I i L ~~0 ,~) 
~~~~~~~~~~~~~~~~~~~

4(~) .r .r T i I ~’I dx d T

by (3.35), (3.37), and the definitions of ~ ( .) and ~ ( • ) .
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